

Measuring CO₂ from Space

Record spectra **Retrieve** variations in of CO_2 and O_2 the column averaged CO₂ dry air mole absorption in fraction, X_{CO2} over the reflected sunlight sunlit hemisphere Initial Radiative Surf/Atm **Transfer** State Model Revised Instrument Surf/Atm Performance State Model **Inverse** Model

Validate measurements to ensure X_{CO2} accuracy of 1 ppm (0.25%)

OCO-2 Sampling Approach

The OCO-2 instrument collects 24 soundings each second as it flies over the sunlit hemisphere of the Earth, yielding almost 1 million soundings each day

A Quick Look at the OCO-2 Prime Mission

Comparison of TCCON and OCO-2 X_{CO2}

Comparisons with the Total Carbon Column Observing Network (TCCON) stations are being used to identify and correct biases in target observations.

After applying a bias correction

- Global bias is reduced to < 0.5 ppm
- Station-to-station biases reduced to ~1.5 ppm

Wunch et al. (2016)

ACOS/GOSAT B7.3, and OCO-2 v7 XCO2

TCCON and other standards have been used to cross validate OCO-2 and GOSAT X_{CO2} to extend the climate data record

Differences
 between GOSAT ACOS B7.3 and
 OCO2 v7r are
 within ±1 ppm for
 overlap regions

OCO-2 under-flights by ACT-America

- Measure much of the atmospheric CO₂ column at < 20km horizontal resolution across 100's of km below OCO-2.
 - Also measure partial column X_{CO2}, aerosols and clouds with lidar.
- Compare spatial variability in airborne CO₂ to OCO-2 CO₂. Evaluate OCO-2 ability to capture tropospheric CO₂ variability along-track.

Summer 2016 ACT-America Campaign

Comparison of X_{CO2} Estimates

- All sensors capture CO₂ decrease on north end of the flight track (western NY).
- Fair weather cumulus in northern PA/southern NY preclude OCO-2 full column X_{CO2}
- Source of offset in MFLL partial column estimates is under investigation

Localized Sources

Anthropogenic Emissions

Solar Induced Chlorophyll Fluorescence (SIF)

Ying Sun et al. (submitted 2017)

2015 El Niño and 2011 La Niña annual biosphere fluxes and their differences

0.01

0.15

Red: release CO₂ into atmosphere Green: absorb CO₂ from atmosphere

The most significant impact of 2015
El Niño on biosphere carbon fluxes is the increase of CO₂ release from the tropics

Junjie Liu et al. (Submitted 2017)

Validating Regional Flux Changes

PRESENT

Evolving Carbon Measurement Capabilities

- TanSat Successfully Launched on 22 Dec 2016
- NASA Earth Ventures GeoCarb Selected
- **CNES MicroCarb Approved for Implementation**

VEAR FUTURE

Summary

- OCO-2 was successfully launched on 2 July 2014, and started its first extended mission on October 16, 2016
 - Its 3-channel spectrometer is now returning 1000s of full-column estimates of $X_{\rm CO2}$ over North America each day
 - These products are being validated against TCCON and other standards to assess their accuracy
 - Small (< 1 ppm), spatially-coherent biases are still posing problems, but are being addressed with algorithm updates
 - ~30 months of data have been delivered to the Goddard Earth Sciences Data and Information Services Center (GES-DISC)

http://disc.sci.gsfc.nasa.gov/OCO-2

 A closer collaboration among the space-based, airborne, and ground-based elements of the carbon-observing network would facilitate the detection and characterization of smallamplitude biases in the space-based products.

Thank You for Your Attention

Questions?